Obtaining and Developing Base Flood Elevations in Zone A Areas

National Flood Insurance Program Administered by FEMA

YOUR INSTRUCTOR

Shona Gibson FEMA Region 6 Phone: (940) 383-7326 Email: <u>Shona.Gibson@fema.dhs.gov</u>

Eric Simmons FEMA Region 9 Phone (510) 627-7029 Eric.Simmons@fema.dhs.gov

Important Information

- Please turn-off or silence cell phones
- Please take phone calls outside and away from the room
- Bathrooms are . . .
- Exits are . . .

Comments

- This course assumes a basic understanding of the National Flood Insurance Program (NFIP)
- Discussion pertains to minimum NFIP requirements
- Discussion applies to Special Flood Hazard Areas (SFHA), i.e. "100-year" floodplain

Questions and comments are encouraged!

Acronyms....

- BFE Base Flood Elevation
- *CRS* Community Rating System
- FEMA Federal Emergency Management Agency
- *NFIP* National Flood Insurance Program
- *FIRM* Flood Insurance Rate Map
- DFIRM Digital Flood Insurance Rate Map
- *LOMA* Letter of Map Amendment
- LOMR Letter of Map Revision
- SFHA Special Flood Hazard Area
- *NGVD* National Geodetic Vertical Datum of 1929
- *NAVD* North American Vertical Datum of 1988
- *LFE* Lowest Floor Elevation
- LAG Lowest Adjacent Grade
- HAG Highest Adjacent Grade
- *WSE* Water Surface Elevation

INTRODUCTION

PURPOSE OF WORKSHOP

To assist local floodplain officials, surveyors, and engineers develop base flood elevations in Approximate Zone A areas at a minimal cost

Workshop will **NOT** show how to use complex hydrology and hydraulics models, mapping tools, and survey techniques

PURPOSE OF WORKSHOP

Intended to be used in riverine and lake areas where flow conditions are fairly uniform

Workshop will <u>NOT</u> show how to develop BFEs in areas that experience alluvial fan flooding and in coastal flood hazard areas

Workshop presentation based on:

AREA OF MINIMAL FLOCE HAZARD

FEMA's Publication 265

"MANAGING FLOODPLAIN DEVELOPMENT

APPROXIMATE ZONE A AREAS"

AREA / ELINEMARK

A Guide for Obtaining and Developing Base Flood (100-year) Elevations

INTRODUCTION

WORKSHOP TOPICS

- Floodplain Management Regulations for Approximate Zone A Areas
- Advantages to Develop Base Flood Elevations
- Show Ways to Develop Base Flood Elevations in Lacustrine and Riverine Systems

FLOODPLAIN MANAGEMENT REGULATIONS FOR APPROXIMATE ZONE A AREAS

THE NATIONAL FLOOD INSURANCE PROGRAM (NFIP)

- National Flood Insurance Act of 1968
- Administered by the Federal Emergency Management Agency (FEMA)

Minimum requirements for <u>obtaining</u> BFE Data (areas where BFEs have not been provided by FEMA)

Communities must obtain, review and reasonably utilize any base flood elevation and floodway data available from a Federal, State, or other source...

[44 CFR 60.3 (b) (4)]

Also in your ordinance

Minimum requirements for **Developing BFE Data**

Require that all new subdivision proposals and other proposed development (including proposals for manufactured home parks and subdivisions) greater than 50 lots or 5 acres, whichever is the lesser, include within such proposals base flood elevation data; [44 CFR 60.3 (b) (3)]

Also in your ordinance

For large developments greater than 5 acres or 50 lots whichever is the lesser, communities <u>must</u>...

- Enforce Section 60.3(b)(3) of the NFIP regulations and require that BFE data be developed for affected lots through a <u>detailed study</u>.
- Follow FEMA's "Guidelines and Specifications for Flood Hazard Mapping Partners", April 2003. https://www.fema.gov/media-library/assets/documents/13948

For large developments greater than 5 acres or 50 lots whichever is the lesser, communities <u>must</u>...

(continued)

- Review and determine that the study is reasonable and accurate. Methods used are comparable to original FIS
- Make sure the lowest floor elevation is certified by a licensed land surveyor or registered P.E.
- Make sure that the applicant revises the FIRM, i.e, obtains a Letter of Map Revision from FEMA when required.

EXCEPTIONS BFE may not be required if...

- Floodplain is contained entirely within an open space lot and building sites are CLEARLY outside of the Zone A area.
- If community has more stringent regulations, those higher standards should be applied.

Proposed 56-lot Subdivision Is BFE Required?

FLOODPLAIN MANAGEMENT REGULATIONS

FLOODPLAIN MANAGEMENT REGULATIONS

Proposed 56-lot Subdivision Is BFE Required?

FLOODPLAIN MANAGEMENT REGULATIONS

Proposed 6.7 Acre Subdivision Is BFE Required?...

FLOODPLAIN MANAGEMENT REGULATIONS

Proposed 40 Acre Dairy Farm. Is BFE Required?

For small developments less than 5 acres or 50 lots with no BFE's determined, communities *should*...

- Determine that construction will be reasonably safe from flooding
- Obtain, review, and reasonably use any base flood elevation and floodway data from federal, State, or other sources (60.3 (b)(4))
- Use local official's knowledge of flood conditions in area to establish a BFE
- Determine if a previous study was developed by a consultant or agency for the area in question
- Use the methods described in FEMA P-265 manual to estimate a BFE

For small developments less than 5 acres or 50 lots with no BFE's determined, communities *should*...

(continued)

- Obtain the elevation of the as-constructed lowest floor and maintain these records with community's files
- Elevate lowest floor to at least 2 feet or more above HAG for better insurance rates.

Questions?

ADVANTAGES OF DEVELOPING BFEs

ADVANTAGES OF DEVELOPING BFE DATA...

- Elevating Lowest Floor Elevation (LFE) to or above the BFE will help reduce future flood losses
- Assure compliance with the community's floodplain management regulations
- Flood insurance policies are lower cost with an established BFE
- Flood insurance requirement could be removed from the building or property (LOMC)
- CRS program provides credit points (Activity 410)

INSURANCE COST vs. LOWEST FLOOR ELEVATION ZONE A (One floor, no basement, **NO BFE**)

INSURANCE COST vs. LOWEST FLOOR ELEVATION ZONE A (One floor, no basement, <u>With BFE</u>)

CHANGES TO THE NFIP BW-12 and HFIAA

http://www.fema.gov/national-floodinsurance-program

ADVANTAGES OF DEVELOPING BFE DATA

SOURCES FOR EXISTING BASE FLOOD ELEVATIONS.

DATA SOURCES FOR BFE DEVELOPMENT

- Flood Insurance Study "Best Available Data"
- Engineering studies
 (published or non-published)
- High water marks from severe storms
- High flow staking conducted by a Federal, State, or Local agency
- Aerial photogrammetry
- Preliminary Firms
- LOMRs
- Backup data from LOMAs

DATA SOURCES

DATA SOURCES FOR BFE DEVELOPMENT

- Local Public Works Department
- Flood Control Districts
- Levee Improvement Districts
- Local Planning Commissions
- Municipal Water Districts
- River Basin Commissions
- Water Control Board

COUNTY AGENCIES Local Floodplain Managers

Contact Info can be found at: www.hawaiinfip.org

City and County of Honolulu

Mario Siu-Li, CFM

County of Maui

Carolyn Cortez, CFM

County of Kauai

Stanford Iwamoto, P.E.

County of Hawaii

Kelly Gomes, P.E. (East Hawaii) Kiran Emler, P.E. (West Hawaii)

STATE AGENCIES

Department of Land and Natural Resources Engineering Division https://dlnreng.hawaii.gov/

• Contacts:

Flood Control / Dam Safety Section Head – Edwin Matsuda, P.E., CFM State NFIP Coordinator - Carol Tyau-Beam, P.E., CFM State General Flood Control Plan Administrator – Jesse Colandrea, P.E.

Hawaii Flood Hazard Assessment Tool

http://gis.hawaiinfip.org/fhat/ www.hawaiinfip.org

State General Flood Control Plan

https://dlnreng.hawaii.gov/fcds/gfcp/

Topo Contours from LIDAR & Flood Zones+

Hawaii FHAT: <u>http://gis.hawaiinfip.org/FHAT/</u>

FEDERAL AGENCIES

- U.S. Army Corps of Engineers
- Federal emergency Management Agency
- U.S. Department of Interior, Geological Survey
- U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS)
- U.S. Department of Transportation, Federal Highway
 Administration

U.S. Army Corps of Engineers

Honolulu District Civil Works Technical Branch Building T-223 Fort Shafter, HI 96858 (916) 835-4138 CEPOH-EC-T@usace.army.mil http://www.poh.usace.army.mil/About/Offices-and-Units/Engineering-Construction-Division/Civil-Works-Technical/

U.S. Department of Interior, Geological Survey Pacific Island Water Science Center

http://hi.water.usgs.gov/

<u>National Weather Service</u> Pacific Island Water Science Center http://hi.water.usgs.gov/

Federal Emergency Management Agency

REGION IX

http://www.r9map.org

FEMA, Federal Insurance and Mitigation Division 1111 Broadway, Suite 1200 Oakland, California 94607-4052 (510) 627-7100

http://www.fema.gov/fhm/

DOWNLOADS

- FEMA P-265 (1995) https://www.fema.gov/media-library/assets/documents/1911
- FEMA's Quick-2 Software v.2.0 http://www.fema.gov/quick-2-version-20#1
- USGS National Streamflow Statistics Program v.6 http://water.usgs.gov/software/NSS/

WEBSITES

• FEMA's Map Service Center https://msc.fema.gov/portal/

FEMA's National Flood Hazard Layer (Geoplatform)

http://fema.maps.arcgis.com/home/webmap/viewer.html?webmap=cbe088e7c8704464aa0fc34eb99e7f30

WEBSITES

- USGS StreamStats v.3 http://water.usgs.gov/osw/streamstats/
- USGS The National Map Viewer http://viewer.nationalmap.gov/viewer/

Topographic Data Availability for Hawaii

Federal Inventory: <u>https://coast.noaa.gov/inventory/</u>

DEVELOPING BASE FLOOD ELEVATIONS FEMA'S P-265

DOWNLOADS

- FEMA P-265 (1995) https://www.fema.gov/media-library/assets/documents/1911
- FEMA's Quick-2 Software v.2.0 http://www.fema.gov/quick-2-version-20#1
- USGS National Streamflow Statistics Program v.6 http://water.usgs.gov/software/NSS/

METHODS OF DEVELOPING BFES

Simplified Methods

Limited Detailed Method (Quick-2)

METHODS OF DEVELOPING BFES

METHODS OF DEVELOPING BFES

Simplified Methods

Contour InterpolationData Extrapolation

METHODS OF DEVELOPING BFES

- May be used to determine if the development is reasonably safe from flooding
- Limitations of BFEs using simplified methods
 - May <u>not</u> be used to apply for a Letter of Map Change
 - May not be used for flood insurance rating
 - May <u>not</u> be used to complete an Elevation Certificate

METHODS OF DEVELOPING BFES

Simplified Methods

Data Extrapolation

DATA EXTRAPOLATION

Extrapolate existing 100-yr profile computed by detailed methods to obtain BFE

Requires existing 100-yr profile computed by detailed methods

100-YEAR PROFILE

DATA EXTRAPOLATION

Extrapolate existing 100-yr profile computed by detailed methods to obtain BFE

- Requires existing 100-yr profile computed by detailed methods
- Only used if site is within 500 ft (upstream) from limit of detailed study

Property within 500 ft from Limit of Detailed Study

DATA EXTRAPOLATION

Extrapolate existing 100-yr profile computed by detailed methods to obtain BFE

- Requires existing 100-yr profile computed by detailed methods
- Only used if site is within 500 ft (upstream) from limit of detailed study
- Channel width and slope similar to downstream reaches

DATA EXTRAPOLATION

Extrapolate existing 100-yr profile computed by detailed methods to obtain BFE

- Requires existing 100-yr profile computed by detailed methods
- Only used if site is within 500 ft (upstream) from limit of detailed study
- Channel width and slope similar to downstream reaches
- Free of backwater effects and slope breaks close to end of study

3 STEP DATA EXTRAPOLATION METHOD

<u>Step 1</u>: Determine location of site on flood profile

Property Y within 500 ft of extrapolation limit – Obtain BFE from Profile

Property Z beyond 500 ft of extrapolation limit – Cannot obtain BFE from Profile

3 STEP DATA EXTRAPOLATION METHOD

<u>Step 2</u>: extend 100-yr profile line to the site

3 STEP DATA EXTRAPOLATION METHOD

• <u>Step 3</u>: Obtain BFE from extended profile

DATA EXTRAPOLATION BACKWATER EFFECTS

DATA EXTRAPOLATION **PROFILE SLOPE BREAKS**

METHODS OF DEVELOPING BFES

Simplified Methods

Contour Interpolation

CONTOUR INTERPOLATION

- Superimposing contour maps (topographic data) on top of FIRM to obtain BFE
- Used on riverine systems and level-ponding from lakes
- Assumed accuracy of ½ contour interval of contour map used
- Smaller contour interval, higher accuracy
- Conservative estimate of BFE

• Floodplain conforms to the contour map

CONFORMING MAP

NON-CONFORMING MAPS

 Riverine flooding – difference between the left and right bank elevations (along a cross-section) are within ½ contour interval

 Lake flooding – difference between the highest and lowest surface elevations, around the lake perimeter, are within ½ contour interval
ACCEPTABILITY

EXAMPLE 1 CONTOUR INTERPOLATION METHOD

5 STEP CONTOUR INTERPOLATION METHOD

- Step 1: Obtain topographic map and FIRM
- <u>Step 2</u>: Superimpose one map over the other
- <u>Step 3</u>: Check map scales
- <u>Step 4</u>: Check acceptability
- <u>Step 5</u>: Determine BFE at location of interest

CONTOUR INTERPOLATION

CONTOUR INTERPOLATION

- Obtain contour/topo map and appropriate FIRM
- Make scales equal
- Check acceptability
 - Draw x-section

CROSS-SECTION PLOT

ACCEPTABILITY CHECK

1. Determine where Zone A crosses contour on both left and right banks, interpolate if necessary:

> Left Elev: <u>438</u> Right Elev: <u>440</u>

 If difference is less than ½ of contour interval, topo is acceptable

(440 - 438 = 2 < 2.5)

Okay!

 If difference is not less than ½ contour interval, this method cannot be used

BFE COMPUTATION

3. BFE = <u>440.5</u> ft

<u>Note:</u> A topographic map with large contour intervals may result in excessively conservative BFE estimates

CONTOUR INTERPOLATION

EXAMPLE 2 CONTOUR INTERPOLATION METHOD

RIVERINE FLOODING EXAMPLE

EXAMPLE 2 CONTOUR INTERPOLATION METHOD

LACUSTRINE

1. WS Elevations along perimeter

Hi <u>283</u> Lo <u>280</u>

 Difference between ws elevations = <u>3'</u>

- 3. Less than ½ contour interval (5 ft) YES
- 4. BFE = Lo elev + ½ contour interval

<u>280</u> + <u>5</u> = <u>285</u> ft

Questions?

SIMPLIFIED METHOD SUMMARY

- Appropriate for floodplain management purposes
- Appropriate only for developments less than 5 acres or 50 lots in size
- Not suitable to apply for Letters of Map Change

Questions?

FEMA'S QUICK-2 LIMITED DETAILED METHOD

DOWNLOADS

- FEMA P-265 (1995) https://www.fema.gov/media-library/assets/documents/1911
- FEMA's Quick-2 Software v.2.0 http://www.fema.gov/quick-2-version-20#1
- USGS National Streamflow Statistics Program v.6 http://water.usgs.gov/software/NSS/

